Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
PLoS Genet ; 20(2): e1011164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416769

RESUMO

TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines (AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone Mitoxantrone (MTX). It is unclear whether women would experience the same adverse effects from all drugs in this class, or if specific drugs would be preferable for certain individuals based on their cardiotoxicity risk profile. To investigate this, we studied the effects of treatment of DOX, DNR, EPI, MTX, and an unrelated monoclonal antibody Trastuzumab (TRZ) on iPSC-derived cardiomyocytes (iPSC-CMs) from six healthy females. All TOP2i induce cell death at concentrations observed in cancer patient serum, while TRZ does not. A sub-lethal dose of all TOP2i induces limited cellular stress but affects calcium handling, a function critical for cardiomyocyte contraction. TOP2i induce thousands of gene expression changes over time, giving rise to four distinct gene expression response signatures, denoted as TOP2i early-acute, early-sustained, and late response genes, and non-response genes. There is no drug- or AC-specific signature. TOP2i early response genes are enriched in chromatin regulators, which mediate AC sensitivity across breast cancer patients. However, there is increased transcriptional variability between individuals following AC treatments. To investigate potential genetic effects on response variability, we first identified a reported set of expression quantitative trait loci (eQTLs) uncovered following DOX treatment in iPSC-CMs. Indeed, DOX response eQTLs are enriched in genes that respond to all TOP2i. Next, we identified 38 genes in loci associated with AC toxicity by GWAS or TWAS. Two thirds of the genes that respond to at least one TOP2i, respond to all ACs with the same direction of effect. Our data demonstrate that TOP2i induce thousands of shared gene expression changes in cardiomyocytes, including genes near SNPs associated with inter-individual variation in response to DOX treatment and AC-induced cardiotoxicity.


Assuntos
Antraciclinas , Cardiotoxicidade , Humanos , Feminino , Antraciclinas/efeitos adversos , Antraciclinas/metabolismo , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/metabolismo , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Doxorrubicina/efeitos adversos , Doxorrubicina/metabolismo , Mitoxantrona/efeitos adversos , Mitoxantrona/metabolismo , Miócitos Cardíacos/metabolismo , Daunorrubicina/metabolismo , Daunorrubicina/farmacologia , Epirubicina/metabolismo , Epirubicina/farmacologia , DNA Topoisomerases Tipo II/genética , Expressão Gênica
2.
Biomolecules ; 13(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371499

RESUMO

Doxorubicin (DOX) and mitoxantrone (MTX) are classical chemotherapeutic agents used in cancer that induce similar clinical cardiotoxic effects, although it is not clear if they share similar underlying molecular mechanisms. We aimed to assess the effects of DOX and MTX on the cardiac remodeling, focusing mainly on metabolism and autophagy. Adult male CD-1 mice received pharmacologically relevant cumulative doses of DOX (18 mg/kg) and MTX (6 mg/kg). Both DOX and MTX disturbed cardiac metabolism, decreasing glycolysis, and increasing the dependency on fatty acids (FA) oxidation, namely, through decreased AMP-activated protein kinase (AMPK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) content and decreased free carnitine (C0) and increased acetylcarnitine (C2) concentration. Additionally, DOX heavily influenced glycolysis, oxidative metabolism, and amino acids turnover by exclusively decreasing phosphofructokinase (PFKM) and electron transfer flavoprotein-ubiquinone oxidoreductase (ETFDH) content, and the concentration of several amino acids. Conversely, both drugs downregulated autophagy given by the decreased content of autophagy protein 5 (ATG5) and microtubule-associated protein light chain 3 (LC3B), with MTX having also an impact on Beclin1. These results emphasize that DOX and MTX modulate cardiac remodeling differently, despite their clinical similarities, which is of paramount importance for future treatments.


Assuntos
Antineoplásicos , Mitoxantrona , Masculino , Camundongos , Animais , Mitoxantrona/farmacologia , Mitoxantrona/metabolismo , Remodelação Ventricular , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , Autofagia , Aminoácidos/metabolismo , Miócitos Cardíacos/metabolismo , Apoptose , Estresse Oxidativo
3.
Oncol Rep ; 45(3): 1142-1152, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33650639

RESUMO

Leukemia stem cells (LSCs), which evade standard chemotherapy, may lead to chemoresistance and disease relapse. The overexpression of ATP­binding cassette subfamily G member 2 (ABCG2) is an important determinant of drug resistance in LSCs and it can serve as a marker for LSCs. Targeting ABCG2 is a potential strategy to selectively treat and eradicate LSCs, and, hence, improve leukemia therapy. Tucatinib (Irbinitinib) is a novel tyrosine kinase inhibitor, targeting ErbB family member HER2, and was approved by the Food and Drug Administration in April 2020, and in Switzerland in May 2020 for the treatment of HER2­positive breast cancer. In the present study, the results demonstrated that tucatinib significantly improved the efficacy of conventional chemotherapeutic agents in ABCG2­overexpressing leukemia cells and primary leukemia blast cells, derived from patients with leukemia. In addition, tucatinib markedly decreased the proportion of leukemia stem cell­like side population (SP) cells. In SP cells, isolated from leukemia cells, the intracellular accumulation of Hoechst 33342, which is an ABCG2 substrate, was significantly elevated by tucatinib. Furthermore, tucatinib notably inhibited the efflux of [3H]­mitoxantrone and, hence, there was a higher level of [3H]­mitoxantrone in the HL60/ABCG2 cell line. The result from the ATPase assay revealed that tucatinib may interact with the drug substrate­binding site and stimulated ATPase activity of ABCG2. However, the protein expression level and cellular location of ABCG2 were not affected by tucatinib treatment. Taken together, these data suggested that tucatinib could sensitize conventional chemotherapeutic agents, in ABCG2­overexpressing leukemia cells and LSCs, by blocking the pump function of the ABCG2 protein. The present study revealed that combined treatment with tucatinib and conventional cytotoxic agents could be a potential therapeutic strategy in ABCG2­positive leukemia.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Leucemia/patologia , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Oxazóis/farmacologia , Piridinas/farmacologia , Quinazolinas/farmacologia , Células da Side Population/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Adulto , Benzimidazóis/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Leucemia/metabolismo , Masculino , Mitoxantrona/metabolismo , Mitoxantrona/farmacologia , Células-Tronco Neoplásicas/metabolismo , Células da Side Population/metabolismo , Células Tumorais Cultivadas
4.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668815

RESUMO

Collagen type 1 (COL1) is a ubiquitously existing extracellular matrix protein whose high density in breast tissue favors metastasis and chemoresistance. COL1-binding of MDA-MB-231 and MCF-7 breast cancer cells is mainly dependent on ß1-integrins (ITGB1). Here, we elucidate the signaling of chemoresistance in both cell lines and their ITGB1-knockdown mutants and elucidated MAPK pathway to be strongly upregulated upon COL1 binding. Notably, Discoidin Domain Receptor 1 (DDR1) was identified as another important COL1-sensor, which is permanently active but takes over the role of COL1-receptor maintaining MAPK activation in ITGB1-knockdown cells. Consequently, inhibition of DDR1 and ERK1/2 act synergistically, and sensitize the cells for cytostatic treatments using mitoxantrone, or doxorubicin, which was associated with an impaired ABCG2 drug efflux transporter activity. These data favor DDR1 as a promising target for cancer cell sensitization, most likely in combination with MAPK pathway inhibitors to circumvent COL1 induced transporter resistance axis. Since ITGB1-knockdown also induces upregulation of pEGFR in MDA-MB-231 cells, inhibitory approaches including EGFR inhibitors, such as gefitinib appear promising for pharmacological interference. These findings provide evidence for the highly dynamic adaptation of breast cancer cells in maintaining matrix binding to circumvent cytotoxicity and highlight DDR1 signaling as a target for sensitization approaches.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias da Mama/metabolismo , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/fisiologia , Integrina beta1/fisiologia , Proteínas de Neoplasias/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Transporte Biológico/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores ErbB/biossíntese , Receptores ErbB/genética , Quinase 1 de Adesão Focal/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Indazóis/farmacologia , Integrina beta1/genética , Integrina beta4/biossíntese , Integrina beta4/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Células MCF-7 , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Mitoxantrona/metabolismo , Mitoxantrona/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Piperazinas/farmacologia , Microambiente Tumoral/efeitos dos fármacos
5.
Nat Commun ; 11(1): 2264, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385283

RESUMO

ABCG2 is an ABC transporter that extrudes a variety of compounds from cells, and presents an obstacle in treating chemotherapy-resistant cancers. Despite recent structural insights, no anticancer drug bound to ABCG2 has been resolved, and the mechanisms of multidrug transport remain obscure. Such a gap of knowledge limits the development of novel compounds that block or evade this critical molecular pump. Here we present single-particle cryo-EM studies of ABCG2 in the apo state, and bound to the three structurally distinct chemotherapeutics. Without the binding of conformation-selective antibody fragments or inhibitors, the resting ABCG2 adopts a closed conformation. Our cryo-EM, biochemical, and functional analyses reveal the binding mode of three chemotherapeutic compounds, demonstrate how these molecules open the closed conformation of the transporter, and establish that imatinib is particularly effective in stabilizing the inward facing conformation of ABCG2. Together these studies reveal the previously unrecognized conformational cycle of ABCG2.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Antineoplásicos/química , Transporte Biológico , Dissulfetos/metabolismo , Células HEK293 , Humanos , Mesilato de Imatinib/metabolismo , Ligantes , Mitoxantrona/química , Mitoxantrona/metabolismo , Modelos Biológicos , Estrutura Secundária de Proteína
6.
Cancer Cell ; 37(3): 324-339.e8, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32183950

RESUMO

Here, we show that tumor ADORA1 deletion suppresses cell growth in human melanoma cell lines in vitro and tumor development in vivo in immune-deficient xenografts. However, this deletion induces the upregulation of PD-L1 levels, which inactivates cocultured T cells in vitro, compromises anti-tumor immunity in vivo, and reduces anti-tumor efficacy in an immune-competent mouse model. Functionally, PD-1 mAb treatment enhances the efficacy of ADORA1-deficient or ADORA1 antagonist-treated melanoma and NSCLC immune-competent mouse models. Mechanistically, we identify ATF3 as the factor transcriptionally upregulating PD-L1 expression. Tumor ATF3 deletion improves the effect of ADORA1 antagonist treatment of melanoma and NSCLC xenografts. We observe higher ADORA1, lower ATF3, and lower PD-L1 expression levels in tumor tissues from nonresponders among PD-1 mAb-treated NSCLC patients.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antígeno B7-H1/metabolismo , Melanoma/imunologia , Receptor A1 de Adenosina/metabolismo , Evasão Tumoral/efeitos dos fármacos , Antagonistas do Receptor A1 de Adenosina/uso terapêutico , Adulto , Idoso , Animais , Antineoplásicos Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Linhagem Celular Tumoral , Citarabina/metabolismo , Feminino , Humanos , Lomustina/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Masculino , Melanoma/tratamento farmacológico , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitoxantrona/metabolismo , Prednisona/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Rep ; 10(1): 3788, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123236

RESUMO

The blood-brain barrier (BBB) serves to protect and regulate the CNS microenvironment. The development of an in-vitro mimic of the BBB requires recapitulating the correct phenotype of the in-vivo BBB, particularly for drug permeation studies. However the majority of widely used BBB models demonstrate low transendothelial electrical resistance (TEER) and poor BBB phenotype. The application of shear stress is known to enhance tight junction formation and hence improve the barrier function. We utilised a high TEER primary porcine brain microvascular endothelial cell (PBMEC) culture to assess the impact of shear stress on barrier formation using the Kirkstall QuasiVivo 600 (QV600) multi-chamber perfusion system. The application of shear stress resulted in a reorientation and enhancement of tight junction formation on both coverslip and permeable inserts, in addition to enhancing and maintaining TEER for longer, when compared to static conditions. Furthermore, the functional consequences of this was demonstrated with the reduction in flux of mitoxantrone across PBMEC monolayers. The QV600 perfusion system may service as a viable tool to enhance and maintain the high TEER PBMEC system for use in in-vitro BBB models.


Assuntos
Barreira Hematoencefálica/química , Mitoxantrona/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Impedância Elétrica , Células Endoteliais/química , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Mitoxantrona/química , Mitoxantrona/farmacologia , Modelos Biológicos , Perfusão , Resistência ao Cisalhamento , Suínos , Junções Íntimas/química , Junções Íntimas/metabolismo
8.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979415

RESUMO

ABCG2 is one of a triumvirate of human multidrug ATP binding cassette (ABC) transporters that are implicated in the defense of cells and tissues against cytotoxic chemicals, but these transporters can also confer chemotherapy resistance states in oncology. Understanding the mechanism of ABCG2 is thus imperative if we are to be able to counter its deleterious activity. The structure of ABCG2 and its related family members (ABCG5/G8) demonstrated that there were two interfaces between the nucleotide binding domains (NBD). In addition to the canonical ATP "sandwich-dimer" interface, there was a second contact region between residues at the C-terminus of the NBD. We investigated this second interface by making mutations to a series of residues that are in close interaction with the opposite NBD. Mutated ABCG2 isoforms were expressed in human embryonic kidney (HEK) 293T cells and analysed for targeting to the membrane, drug transport, and ATPase activity. Mutations to this second interface had a number of effects on ABCG2, including altered drug specificity, altered drug transport, and, in two mutants, a loss of ATPase activity. The results demonstrate that this region is particularly sensitive to mutation and can impact not only direct, local NBD events (i.e., ATP hydrolysis) but also the allosteric communication to the transmembrane domains and drug transport.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Preparações Farmacêuticas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Animais , Transporte Biológico/genética , Embrião de Galinha , Clorofila/análogos & derivados , Clorofila/metabolismo , Resistência a Múltiplos Medicamentos/genética , Células HEK293 , Humanos , Hidrólise , Mitoxantrona/metabolismo , Mutação , Domínios Proteicos/genética , Inibidores da Topoisomerase II/metabolismo
9.
J Biol Chem ; 294(52): 20222-20232, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31719146

RESUMO

ATP-binding cassette (ABC) subfamily G member 2 (ABCG2) belongs to the ABC transporter superfamily and has been implicated in multidrug resistance of cancers. Although the structure and function of ABCG2 have been extensively studied, little is known about its biogenesis and the regulation thereof. In this study, using mutagenesis and several biochemical analyses, we show that the positive charges in the vicinity of the RKR motif downstream of the ABC signature drive trafficking of nascent ABCG2 out of the endoplasmic reticulum (ER) onto plasma membranes. Substitutions of and naturally occurring single-nucleotide polymorphisms within these positively charged residues disabled the trafficking of ABCG2 out of the ER. A representative ABCG2 variant in which the RKR motif had been altered underwent increased ER stress-associated degradation. We also found that unlike WT ABCG2, genetic ABCG2 RKR variants have disrupted normal maturation and do not reduce accumulation of the anticancer drug mitoxantrone and no longer confer resistance to the drug. We conclude that the positive charges downstream of the ABC signature motif critically regulate ABCG2 trafficking and maturation. We propose that single-nucleotide polymorphisms of these residues reduce ABCG2 expression via ER stress-associated degradation pathway and may contribute to reduced cancer drug resistance, improving the success of cancer chemotherapy.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Animais , Antineoplásicos/metabolismo , Cicloeximida/farmacologia , Dimerização , Resistencia a Medicamentos Antineoplásicos/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glicosilação , Células HEK293 , Meia-Vida , Humanos , Mitoxantrona/metabolismo , Mitoxantrona/farmacologia , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Proteólise/efeitos dos fármacos
10.
Nat Commun ; 10(1): 5433, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780715

RESUMO

The human ATP-binding cassette transporter ABCG2 is a key to anticancer resistance and physiological detoxification. However, the molecular mechanism of substrate transport remains enigmatic. A hydrophobic di-leucine motif in the ABCG2 core separates a large intracellular cavity from a smaller upper cavity. We show that the di-leucine motif acts as a valve that controls drug extrusion. Moreover, the extracellular structure engages the re-entry helix and all extracellular loops to form a roof architecture on top of the upper cavity. Disulfide bridges and a salt bridge limit roof flexibility, but provide a lid-like function to control drug release. We propose that drug translocation from the central to the upper cavities through the valve is driven by a squeezing motion, suggesting that ABCG2 operates similar to a peristaltic pump. Finally, the roof contains essential residues, offering therapeutic options to block ABCG2 by either targeting the valve or essential residues in the roof.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Antineoplásicos/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Células HEK293 , Humanos , Mitoxantrona/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/ultraestrutura
11.
Eur J Pharmacol ; 863: 172611, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31476282

RESUMO

Multidrug resistance (MDR) lead to inadequate response to chemotherapy and cause failure in cancer treatment. One of the targeted approaches to overcome MDR in cancer cells is interfering or inhibiting ATP binding cassette (ABC) transporters. Among all members in ABC transporters superfamily, ABCB1 (ABC transporter subfamily B #1) and ABCG2 (ABC transporter subfamily G #2) play an important role in the development of cancer MDR. In this study, we synthesized a novel 5-cyano-6-phenylpyrimidin derivative 479, which exhibited selective dual-activity in reversing MDR mediated by ABCB1 and ABCG2, without affecting MDR mediated by ABCC1 (ABC transporter subfamily C #1) and ABCC10 (ABC transporter subfamily C #10). Further mechanism studies demonstrated that 479 increased the accumulation of paclitaxel and mitoxantrone in cancer cells by interrupting the efflux function of transporters and stimulating ABCB1/ABCG2 ATPase activity. In silico study provided evidence that 479 formed multiple physiochemical bonds with the drug-binding pocket of ABCB1 and ABCG2. Overall, our results provide a promising prototype in designing potent dual reversal agents targeting ABCB1- and ABCG2-meidated MDR.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Linhagem Celular Tumoral , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Mitoxantrona/metabolismo , Simulação de Acoplamento Molecular , Paclitaxel/metabolismo , Conformação Proteica , Pirimidinas/síntese química , Pirimidinas/metabolismo
12.
Biochemistry ; 58(4): 245-249, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30350580

RESUMO

Numerous studies have been published stressing the importance of finding ligands that can bind specifically to DNA secondary structures. Several have identified ligands that are presented as having specific binding to the G-quadruplex; however, these were not originally tested on the complementary i-motif structure. The i-motif was overlooked and presumed to be irrelevant due to the belief that the hemiprotonated (cytosine+-cytosine) base pair at the core of the structure required acidic pH. The pathophysiological relevance of i-motifs has since been documented, as well as the discovery of several genomic sequences, which can form i-motif at neutral pH. Using different biophysical methodologies, we provide experimental evidence to show that widely used G-quadruplex ligands interact with i-motif structures at neutral pH, generally leading to their destabilization. Crucially, this has implications both for the search for quadruplex binding compounds as well as for the effects of compounds reported to have G-quadruplex specificity without examining their effects on i-motif.


Assuntos
Quadruplex G , Motivos de Nucleotídeos , Acridinas/química , Acridinas/metabolismo , Aminoquinolinas/química , Aminoquinolinas/metabolismo , Proteínas Reguladoras de Apoptose/genética , Berberina/química , Berberina/metabolismo , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Ligantes , Mitoxantrona/química , Mitoxantrona/metabolismo , Proteínas do Tecido Nervoso/genética , Ácidos Picolínicos/química , Ácidos Picolínicos/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Temperatura de Transição
13.
Chem Commun (Camb) ; 54(68): 9486-9489, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30087959
14.
Toxicol Appl Pharmacol ; 337: 22-29, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29079042

RESUMO

Furanocoumarins derived from herbal and citrus extracts can act as antibacterial, antioxidant, immunomodulator, apoptotic, and selective anticancer agents, prompting a biological investigation to determine and predict their clinical therapeutic significance. Here, the cell cytotoxic effects of bergapten and xanthotoxin were analyzed alone and in combination with standard chemotherapeutics on three multidrug resistant cells and their nonresistant parental counterparts. The furanocoumarins modulatory effects on MDR1, BCRP, and MRP pump expression and function were investigated. Although quantitative real time PCR demonstrated that the MDR transcript level changes in a time dependent manner, flow cytometric analyses using fluorescent-labeled antibodies have indicated that bergapten and xanthotoxin had no significant effect on the protein levels. FACS analyses indicated that these prominent anticancer agents significantly blocked MDR1, BCRP, and MRP transporter function. Maximum furanocoumarin-mediated pump activity blockage in the MDR-resistant cells was quantified as 87% of normal and consequently, chemotherapeutic accumulation increased up to 2.7-fold and cytotoxicity tension increased 104-fold. MDR1 efflux kinetics also revealed that the maximum velocity and the pump affinity to daunorubicin were uncompetitively decreased. We conclude that bergapten and xanthotoxin are cytotoxic agents capable of preventing daunorubicin, mitoxantrone, and cisplatin binding to ABC-transporters and subsequently inhibiting their efflux out of cells and they may be a potential combination therapy for malignant cancers.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Cisplatino/farmacologia , Daunorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metoxaleno/análogos & derivados , Metoxaleno/farmacologia , Mitoxantrona/farmacologia , Neoplasias/tratamento farmacológico , 5-Metoxipsoraleno , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/metabolismo , Daunorrubicina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Cinética , Células MCF-7 , Mitoxantrona/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
15.
J Pharm Pharmacol ; 69(8): 991-1001, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28444771

RESUMO

OBJECTIVES: Targeted delivery of mitoxantrone (MTO, an anthraquinone drug with high antitumour effect) may be achieved using a novel nanoparticulate delivery system via binding the oestrogen receptor (ER, highly expressed in a variety of human tumours). METHODS: A novel liposomal nanoparticle (NP) was developed using a conjugate derived from 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000] (DSPE-PEG2000 -NH2 ) and oestrone (ES, is known to bind the ER) to produce an ES-targeted PEGylated liposome (ES-SSL). The resulting targeted NP was loaded with MTO to produce a targeted liposome-MTO formulation (ES-SSL-MTO). KEY FINDINGS: The targeted formulation (~140 nm, 1.5 mV) achieved over 95% drug encapsulation efficiency and a favourable stability at 4, 25 and 37 °C up to 48 h. The flow cytometric data indicated that cellular uptake of ES-SSL into human leukaemia HL-60 cells was mediated via binding the oestrogen receptor. In addition, the ES-SSL-MTO significantly reduced the growth of HL-60 cells. CONCLUSIONS: Our results provide a proof of principle that ES-modified PEGylated liposomes can target the ER, thereby potentially improving the therapeutic benefits in ER-overexpressed tumours.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Estrona/metabolismo , Mitoxantrona/síntese química , Mitoxantrona/metabolismo , Receptores de Estrogênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Fenômenos Químicos , Avaliação Pré-Clínica de Medicamentos/métodos , Células HL-60 , Humanos , Lipossomos , Mitoxantrona/administração & dosagem
16.
J Food Sci ; 82(5): 1224-1230, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28346686

RESUMO

The ability of catechins and their related compounds to inhibit breast cancer resistance protein (BCRP) function in Caco-2 cell monolayers was investigated with mitoxantrone as a BCRP substrate. The gallate or pyrogallol moiety on the catechin structure seemed to promote increased cellular accumulation and inhibit efflux transport of mitoxantrone. The ability of gallate catechins such as (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin gallate (ECG) to increase cellular accumulation and inhibit efflux transport of mitoxantrone was greater than that of nongallate catechins. Gallic acid octyl ester (GAO) also increased intracellular mitoxantrone accumulation. Experiments using GAO derivatives indicated that the gallate moiety required the presence of a long carbon chain for BCRP inhibition. Cellular accumulation and reduced efflux transport of mitoxantrone were greater with epigallocatechin 3-(3″-O-butyl) gallate than with EGCG. EGCG inhibition of BCRP seemed to be restricted by hydrophobicity. The co-administration of catechins, particularly EGCG and related compounds, with greater hydrophobicity may increase the therapeutic activities of BCRP substrates such as mitoxantrone.


Assuntos
Analgésicos/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Mitoxantrona/metabolismo , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Humanos , Chá/química
17.
Biochem Pharmacol ; 132: 29-37, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28242251

RESUMO

The expression of breast cancer resistant protein (BCRP) in lung cancer is correlated with development of multidrug resistance (MDR) and therefore leads to lower response to chemotherapy. ZM323881, a previously developed selective VEGFR-2 inhibitor, was found to have inhibitory effects on BCRP-mediated MDR in this investigation. ZM323881 significantly decreased the cytotoxic doses of mitoxantrone and SN-38 in BCRP-overexpressing NCI-H460/MX20 cells. Mechanistic studies revealed that ZM323881 effected by inhibiting BCRP-mediated drug efflux, leading to intracellular accumulation of BCRP substrates. No significant alteration in the expression levels and localization pattern of BCRP was observed when BCRP-overexpressing cells were exposed to ZM323881. Stimulated bell-shaped ATPase activities were observed. Molecular docking suggested that ZM323881 binds to the modulator site of BCRP and the binding pose is stable validated by 100ns molecular dynamic simulation. Overall, our results indicated that ZM323881 reversed BCRP-related MDR by inhibiting its efflux function. These findings might be useful in developing combination chemotherapy for MDR cancer treatment.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/fisiologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Proteínas de Neoplasias/fisiologia , Quinazolinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Benzimidazóis/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Células HEK293 , Humanos , Mitoxantrona/metabolismo , Simulação de Dinâmica Molecular
18.
Curr Pharm Des ; 23(18): 2685-2694, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28201971

RESUMO

BACKGROUND: Light delivery in photodynamic therapy is a challenging issue in deep cancer treatment. To solve this problem, photosensitizers are conjugated to X-ray luminescent nanoparticles. When the complexes are stimulated by X-rays during radiotherapy, the nanoparticles generate light and activate the photosensitizers. METHOD: Core-shell molecularly imprinted polymers (MIPs) were prepared against mitoxantrone (MX) in which TiO2 nanoparticles were applied as a core, diacrylated polycaprolctone as a biodegradable cross-linker and methacrylic acid (MAA) or 4-vinylpyridin (4-VP) as the functional monomer. TiO2 was selected as a scintillator, MX as a photosensitizer and MIP as a drug delivery system in order to evaluate the possibility of using photodynamic therapy (PDT) during radiotherapy in the next studies. Binding properties of polymers and drug release profile were studied and the optimized MIP was characterized by SEM, TEM, EDS, FT-IR and XRD. Also, cytotoxicity and free radical production were also studied in vitro. RESULTS: Data indicated that MAA-based MIP had superior binding properties compared to its non-imprinted polymer (NIP) and higher imprinting factor value than MIP-4VP. Drug release experiments indicated higher MX released amount from MAA-based MIP than the other polymers. MAA-based MIP was selected as an optimized carrier for MX delivery system. According to the results, the size of MX-MIP@TiO2 was reported to be less than 75 nm. The free radical production and cytotoxicity of nanoparticles were also evaluated in vitro. CONCLUSION: The results of the present work proposed the possibility of applying MIP layer as a drug delivery system around TiO2 nanoparticles.


Assuntos
Sistemas de Liberação de Medicamentos , Metacrilatos/administração & dosagem , Mitoxantrona/administração & dosagem , Nanopartículas/administração & dosagem , Poliésteres/administração & dosagem , Titânio/administração & dosagem , Acrilatos/administração & dosagem , Acrilatos/química , Acrilatos/metabolismo , Linhagem Celular Tumoral , Radicais Livres/antagonistas & inibidores , Radicais Livres/metabolismo , Humanos , Metacrilatos/química , Metacrilatos/metabolismo , Mitoxantrona/química , Mitoxantrona/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Titânio/química , Titânio/metabolismo , Difração de Raios X
19.
Arch Toxicol ; 91(4): 1871-1890, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27629428

RESUMO

Mitoxantrone (MTX) is an antineoplastic agent used to treat several types of cancers and on multiple sclerosis, which shows a high incidence of cardiotoxicity. Still, the underlying mechanisms of MTX cardiotoxicity are poorly understood and the potential toxicity of its metabolites scarcely investigated. Therefore, this work aimed to synthesize the MTX-naphthoquinoxaline metabolite (NAPHT) and to compare its cytotoxicity to the parent compound in 7-day differentiated H9c2 cells using pharmacological relevant concentrations (0.01-5 µM). MTX was more toxic in equivalent concentrations in all cytotoxicity tests performed [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction, neutral red uptake, and lactate dehydrogenase release assays] and times tested (24 and 48 h). Both MTX and NAPHT significantly decreased mitochondrial membrane potential in 7-day differentiated H9c2 cells after a 12-h incubation. However, energetic pathways were affected in a different manner after MTX or NAPHT incubation. ATP increased and lactate levels decreased after a 24-h incubation with MTX, whereas for the same incubation time and concentrations, NAPHT did not cause any significant effect. The increased activity of ATP synthase seems responsible for MTX-induced increases in ATP levels, as oligomycin (an inhibitor of ATP synthase) abrogated this effect on 5 µM MTX-incubated cells. 3-Methyladenine (an autophagy inhibitor) was the only molecule to give a partial protection against the cytotoxicity produced by MTX or NAPHT. To the best of our knowledge, this was the first broad study on NAPHT cardiotoxicity, and it revealed that the parent drug, MTX, caused a higher disruption in the energetic pathways in a cardiac model in vitro, whereas autophagy is involved in the toxicity of both compounds. In conclusion, NAPHT is claimed to largely contribute to MTX-anticancer properties; therefore, this metabolite should be regarded as a good option for a safer anticancer therapy since it is less cardiotoxic than MTX.


Assuntos
Antineoplásicos/toxicidade , Cardiotoxicidade/etiologia , Mitoxantrona/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Autofagia/efeitos dos fármacos , Cardiotoxicidade/patologia , Linhagem Celular , Relação Dose-Resposta a Droga , Ácido Láctico/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitoxantrona/administração & dosagem , Mitoxantrona/metabolismo , Miócitos Cardíacos/patologia , Quinoxalinas/metabolismo , Quinoxalinas/toxicidade , Ratos , Fatores de Tempo
20.
Biochimie ; 128-129: 59-69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27422118

RESUMO

The formation of complex between anti-cancer drug mitoxantrone (MTX) and tetra-molecular parallel G-quadruplex DNA [d-(TTGGGGT)]4 has been studied by solution state one and two dimensional NMR spectroscopy. Mitoxantrone forms a head-to-tail dimer and binds at two opposite grooves of the G-quadruplex. The Job's method of continuous variation and thermal melting studies independently ascertain binding stoichiometry of 4:1 in mitoxantrone:DNA complex. The existence of only four guanine NH peaks corresponding to the four G-quartets during the course of titration shows that C4 symmetry of G-quadruplex is intact upon binding of mitoxantrone. The specific inter molecular short distance contacts between protons of two mitoxantrone molecules of dimer, that is, ring A protons with ring C and side chain methylene protons, confirms the formation of mitoxantrone head-to-tail dimer. The observed 38 Nuclear Overhauser Enhancement (NOE) cross peaks between MTX and G-quadruplex DNA indicate formation of a well-defined complex. The three dimensional structure of 4:1 mitoxantrone:[d-(TTGGGGT)]4 complex computed by using experimental distance restraints followed by restrained Molecular Dynamics (rMD) simulations envisages the critical knowledge of specific molecular interactions within ligand-G-quadruplex complex. The findings are of direct interest in development of anti-cancer therapeutic drug based on G-quadruplex stabilization, resulting in telomerase inhibition.


Assuntos
DNA/química , Quadruplex G , Mitoxantrona/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Sequência de Bases , Sítios de Ligação , DNA/genética , DNA/metabolismo , Dimerização , Humanos , Mitoxantrona/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Desnaturação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...